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1 Introduction

An object is a distinct and selectively accessible software element that resides on one of
the storage resources of the system. The objects architecture defines the objects as the
elements that constitute the system. It also defines their classification, the relationships
between them, the set of operations they are subjected to and execution parameters that
permit scheduling them for execution and access.

The objects architectures we find today tend to deal with object creation, deletion, access
and protection in ways that often become cumbersome for real-time applications. The
major inadequacies we find in these architectures are the uncertainties they introduce in
access time to objects during execution. For a real time system that manages its resources
according to deadlines it has to meet, these inadequacies become serious shortcomings.

We propose an architecture in which object manipulation (creation deletion, access and
protection) is handled in a way in which access time can meet the real-time constraints.
This proposed architecture further demonstrates time determinism in execution of objects
as well, a property that enables predictability of its behavior.

Two major questions are to be answered before considering the ways in which objects
are manipulated. The first is the mechanisms of creation and deletion of objects in a
distributed system. The second is the way in which objects are accessed, considering
requirements for unique identification and requirements for protection imposition. These
questions will be discussed in details in the following sections. In this paper we distinguish
two classes of objects: executable objects and nonexecutable objects. All the objects are
assumed to be addressable by the machines that are used in the distributed system, and
representation problems are assumed to be treated locally.

2 Creation and Deletion of Objects

In order to derive the justification for the existence of an object, let us first consider the
existential justification of a logical assertion in a database. Such justification takes the
form of data dependency mechanism. The existence of an assertion sometimes depends on
the existence of one or more other assertions, hence producing a strong data dependency
such that modifications (as deletion) must consider all such relations. The justificand is
pointed to by a justification which exists as long as its justifiers support it. One should
be cautious and verify that a directed cycle does not exist, where the justificand becomes
its own justifier. To understand this relationship consider Figure 1. Let one JUSTIFIER
be the assertion p =*- q", and let the second JUSTIFIER be the assertion "p". A trivial
JUSTIFICATION can be inferred, and the JUSTIFICAND is then the assertion "q". The
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Figure 2: Object's Owner and User Justification

above JUSTIFICATION requires the existance of two JUSTIFIERs, and when one of them
is deleted, the JUSTFICAND should be deleted too. The doubly-linked relationship is
very convenient for a search procedure that is expected to move within the network of
assertions to manage the data dependencies. For example, it is sufficient for a garbage
collection process to examine the JUSTIFICATION in order to mark an object.

When we derive a similar mechanism for the existential justification of an object in a
distributed system, we find two types of JUSTIFIERs: a user of the object and the owner
of an object. In order to delete such an object, its justification should be unlinked from
its owner, and its justification should also have no users linked to it. The reason can be
seen in Figure 2. We can then state the following. When an owner of an object creates
it, it is the only justifier for its existance. When another user shares the object with its
owner, the owner cannot delete it until the user completes the usage. A user that is not the
owner of an object can never delete it, unless the owner does. This relationship is trivially
expanded to one owner and multiple sharing users. As will be emphasized in the following
sections, the JUSTIFICATION can be used to implement mutual exclusion, authorization
control and many other tasks.
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3 Accessing Objects

For an object to be accessible, the object must be properly identified and the access should
be properly authorized. We distinguish the identification and the authorization since
identification is for reaching purposes, while authorization also depends on the type of
manipulation requirement (as in read permission and write denial).

3.1 Identifying Objects

In order to identify an object, one is required to have the ability of distinguishing it from
the set of accessible objects. This ability is based on a property of uniquely naming each
of the accessible objects at each level of the system operation. The term "name" therefore
encounters more than just an appellative nature. It may be better interpreted as a precise
pointer to the object.

Each name is always interpreted with respect to a particular context ([16]). The context
is a set of bindings of names to objects. We show in the following section how we propose
to attach properties to contexts.

In distributed systems we find different types of names at different layers of the system
architecture ([2]). Each layer must maintain a uniform view ([20]) at its distributed parti-
tions when referring to an object. Therefore, there is a need to manage mappings for the
name spaces used, keeping each name unique for all accessibility levels ([14]):

1. Character atring names: used in the file system and in user programs.

2. Segment numbers: used by a running process to refer to an active segment.

3. A segment table (of a user) provides physical addreaae for the page table of a corre-
sponding segment.

Context initializing (also called binding, or linking, or loading) is the bridge between
the high level human oriented names, to the low level machine oriented addressing world.
Furthermore, the need to convert human identifiers to machine identifiers requires the use
of some kind of a catalog that maps the two finite spaces. Allowing possible access of
multiple users, extends the above requirement to a multiple catalog system. Here each
catalog can be viewed as a context in which the identifiers are interpreted. In other words,
different catalogs can use the same "name" for different objects, and we can still distinguish
between them. The ability to selectively share a context is made possible if catalogs appear
as named objects in other catalogs. The network that results is called naming network
([16]). When a context is shared, there is a need to distinguish between the name given
to an object by its owner, and the name by which an external user refers to this object. A
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Figure 3: Example: Different Contexts Sharing an Object

trivial solution is to impose uniqueness of names globally, but it is impractical. A better
solution is a mechanism that connects an object that contains other objects' names to the
proper contexts in which these names are bound. The simplest way to do it is to use the
catalogs as such mechanisms. Yet, generally we want to allow the usage of different names
at different contexts when referring to the same shared object, and therefore, the catalogs
are not sufficient. Hence one needs dedicated pointers constructs (closures in [16J) that
serve as joints between objects accessed and the contexts (catalogs) that attempt to access
them.

Recalling the scheme discussed in section 2, the joint is the JUSTIFICATION, the
catalogs (also called directories) are the JUSTIFIERS, and the accessed object is the
JUSTIFICAND. For example consider Figure 3. An object a of contextl refers to an
object whose name according to this context is b. Yet, this object is named c according
to context2, which owns it. Furthermore, when the latter refers to a, it is a according to
context2. Object a of 1 is justified by the catalog of contexti, while object a of 2 is justified
by the catalog of context2. The object c of 2 is justified by two catalogs. Its joint points
forward to c, and backward to its two justifiers. The knowledge of 'who's the owner?" is
also kept within the joints.

The overall scheme is called the name service, and is supported by the operating system.
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A context initialization procedure is activated when a bridge between different naming
levels does not exist. A context initializing procedure usually consists of resolving and
installing actions. The resolution of a name involves searching an existing object that is
identified by a given name in a given context.

The unknown time characteristics in such a search disqualifies it as a possible run
time procedure in a real-time system. In a real-time system the context initializer must
be allowed only as an off-line task,' probably executed before running a real-time job.
In addition, in order to be able to adhere to timing constraints, the response time of
a name service should always be reasonably bounded. In order to achieve such bounds
name servers mighit be limited to small-size unique names, in order to reduce search time.
Such a restriction raises issues of reusability of names, recalling the need to maintain
the uniqueness of names in a given context, especially regarding the selectively shared
contexts objective. However, implementing such a service correctly allows any user to
disconnect itself from external objects, but requires some additional tools for deletion of
objects because other users may be linked to them (see section 2).

The search rules in a name service in a real-time operating system should be efficient
from the real-time point of view. As such, a direct entry in a directory should point a
joint of an object, and an indirect entry should specify the whole access path to the shared
context, to the joint in concern. Applying such an approach allows limiting the number of
directories that should be searched for an access (for example, the user's working directory,
a language library and a system library). The language and System librarys can be kept
ordered and balanced, and thereby reduce search time to a minimal bounded time.

Some examples of distributed operating systems and their name servers are given by
Tanenbaum and Von Renesse ([18]), reviewing their distributed properties. The Cambridge
operating system has a single name server process that maintains names mapping on line.
The V operating system uses a three level mapping context servers. Amoeba ([13]) and
Eden ([1]) operating systems use a capability ([5,8]) system naming scheme.

3.2 Protecting Objects

Real-time embedded systems usually neglect protection mechanisms. However, a real-
time operating system cannot. Stringent real-time requirements, being the dominant ones,
necessitate keeping the time taken by the protection mechanism as low as possible. For
example, consider the case in which users are being given a direct access to required
resources on remote sites. The access time is reduced, but it is done hand in hand with
increasing the availability of a potentially restricted information. Most of today systems

See section 4.1 for the definition of "off-line.



cannot be that limited from a protection point of view.
Protection systems are divided into two categories: list oriented systems and ticket

oriented systems (as capabilities [5]). Access control lists imply search procedures that are
not adequate for real-time systems. Capability system, in which authorization is a prior
phase to run time, provides a better real-time environment.

The joint introduced above is suitable for maintaining a ticket oriented protection
scheme. Its advantage is that its authorization test is carried out prior to run time,
before binding it to the user's context. Furthermore, a user needs a backward link from
the joint in order to gain access to an object, and thus the joint acts as an information
hiding module. Embeding an access control process in it may support mutual exclusion
control as well.

In a distributed system, an application program does not have an explicit knowledge
about storage locations it uses. Therefore a service which maintains a link to remote sites
must be given. Furthermore, timing properties of different allocation instances may differ
significantly. Therefore, the efficiency of such a service is very significant.

Some examples of protection mechanisms and servers are given in [18]. Amoeba ([13])
and Eden ([1]) operating systems use capabilities as a ticket oriented protection mechanism.
Yet, in the Amoeba operating system rights are protected cryptographically, while in the
Eden operating system the kernel supports the protection. The Cambridge operating
system uses a list oriented protection scheme. The Eden operating system presents an
interesting approach in its file service. Each object has its private file server as a process
embeded in it, and the directory service is separate. This principle may be applied to the
protection mechanism of the joints, as mentioned above.

4 Time Constraints and Objects

After considering a sample of timing problems in accessing and protecting objects, a more
detailed examination of the timing constraints is appropriate. But definitions of time
constrains require some prior definitions for other time notions.

Let Ci(t) be the monotonic function that maps real-time (global time) to clock-i time.
Each computation is assumed to have accessibility to some clock in the system. The clocks
in the system are inaccurate due to a nonzero drift-rate. This inaccuracy results in incorrect
time readouts, in other words CQ(t) # t. Clock synchronization algorithms ([9,11,19,6])
result in having a local drift rate which is bounded. Therefore, each computation is
assumed to be able to access a clock, and acquire the estimate of the current real-time

' C,(,) = t ± A,(t).

We define event as a detectable instantaneous atomic change in a system state. In a

MI 8
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real-time system, the state of the system includes the set of clocks {C (t) }. Let C (t) = Co
be the set of system states in which the readout of clock-i is Co. Hence we can define the
following predicates on system states.

Taft(Co)

which is true for Ci(t) _ Co and false otherwise.

Tbef (Cd)

which is true for Ci(t) _ Cd and false otherwise.

4.1 Time Constraints

Informally speaking, a time constraint is a requirement to start executing a particular ex-
ecutable object, after a condition is satisfied, and complete the execution before a deadline
is passed. The execution time of the object is assumed to be given, and the constraint is
extended to a periodic execution of the object.

A time constraint is formally defined as

< Id, Taft(condition,), crd, fld, Tbef (condition2) >

where:

Id is the name of the executable object (process) in the proper context in concern,

Taft(condition,) states after what event should execution begin. Simple true stands for
"as soon as possible",

CIA is the computation time of object Id,

fld is the frequency in which the computation should be carried out in case this is a periodic
process. In case of a spontaneous (sporadic) process, this is the maximal frequency
expected. fid = 0 stands for a single occurence of execution,

Tbef(condition2 ) states the deadline dld = Cd - Now which should be met. condition2 =
CId(t) = Cd with Cd = oo stands for an "off line" computation.

The "window" defined from Taft(condition,) to Tbef (condition2) delimits the domain in
which the executable object is allowed to execute.

9



4.2 Real-Time Reactive Operating System and Time Constraints

A real-time reactive operating system uses the time constraint as the key to its decisions
on execution initiation and resource scheduling. A reactive system repeatedly responds
to requests from its environment by producing outputs (171). In our case the requests
are invocations of executable objects. While in regular operating systems the scheduling
mechanism is entirely application independent, and is maintained as an internal issue of the
operating system, in real-time operating systems the resource management and allocation
mechanism should adhere to application constraints. This strong relationship between a
real-time operating system and the application programs implies that when a real-time
application job is running, the system's global discipline state is relatively constant. Yet,
there are scheduling disciplines that a real-time system can never support. One example
is a round robin discipline, in which the overhead of switching control between processes
does not adhere to timing efficiency. The most general scheduling is divided to two parts:

* Off-line scheduling: a process in which the management of the policy of a discipline of
a service scheduling is dynamically updated. For example, when a resource is added to
the system, in addition to recognizing the availability of that resource a new discipline
may be adequate.

* On-line scheduling: application of current discipline.

Scheduling can be considered as maintaining ordered lists (queues), whose items are
members of a given set, and the items are sorted according to a specified key. In our
model the given set is the set of real-time constraints. Two important properties of the
above model hold in case a working solution is feasible.

1. Vi in the model: c, < d, < 1/f,.

2. &. cif, < the number of available resources.

The first property must hold continuously, and is a consideration of the "on-line" scheduler,
while the latter is a condition for the "off-line" scheduler. The latter requirement is stronger
than what is really needed: it is based on the maximal demand rate the system can findI due to spontaneous processes.

From the above model we can derive the property that distinguishes a real-time oper-
ating system from others:

e In a real-time operating system the scheduling decisions are based on the real-time
constraints (the above quintuple) of the active processes in the system.

* 10



A variety of scheduling disciplines of real-time constraints and their properties is discussed
by A. Mok in [12], and we do not deal with it in this paper. One aspect we do emphasize
is that the on-line scheduler requires the knowledge of the time constraints imposed on an
object in order to schedule it. Therefore, this property should be attached to the object,

* and allow its efficient scheduling.
The on-line scheduler is activated by process requests and by time servers. Its imple-

mentation should be very efficient, at "kernel" level, so that the overhead of management
is minimized. The off-line scheduler can be implemented at a user process level and not
necessarily in the kernel level. User processes are also allowed to be off-line, e.g. for
log-in, compile, bind and so on. As such, they can be served in any time independent
discipline (LIFO, FIFO etc.), a policy which is used for ordering processes that have the
same non-critical "latency".

The time constraint contains a parameter CUd which is assumed to be given and to
characterize the executable object's timing characteristics. We have shown above the
importance of this parameter. Now we show how this parameter is affected by the objects
architecture of the system. Furthermore, we state necessary properties this parameter has
to describe.

4.3 Time Constraints Characteristics of an Object

A model of the execution time of a time constraint can be constructed (e.g. [10]) of five
components:

1. Execution time of the task on the processor (E1) which depends on the task size (Ti)
and the processor MIPS rate 00'):

Ei= T71M.
2. The time required to access other objects when executing this object (Ac).

3. The communication network and operating system overhead (Ov), which is used for
concurrency control, integrity checking, recovery check-point update etc.

4. Inter-processor communication (IPC), whose cost is higher if communicants reside on
different processors.

5. Waiting time (W21 which is consumed when the task waits in the processor en-
ablement queue. This figure depends highly on the sizes and number of tasks, the

2Better estimators, but more complicated ones, have been derived. For examples, a schedulability analyzer for Real-Time
Euclid ([11J) is known to provide estimates of execution time bounds with an error smaller than 26%. Since it is not the
scope of this paper, we have chosen to refer to this simple model.



processor load, and the number of enablements (especially if large tasks are assigned

to the same processor). This figure is the main reason for disqualifying round robin
discipline.

Therefore, the total execution time of a process can be constructed

ET = ,(Ei) + Ac + Ov + IPC + WT.
4 i

Enhencement of the performance of a system, as well as increasing the system's margin
away from being unable to satisfy the demands, is done by minimizing ET. For a given
network, Ov and the number of enablements is relatively a constant. Hence in order to
reduce ET the following steps should be adopted:

* Reduce WT: large tasks should be assigned to different processors.

e Reduce IPC: tasks with high IPC cost with each other, should be assigned to the
same processor.

9 Reduce E,: large tasks should be assigned to processors with higher MIPs rate.

e Enhance Ac: reduce access time to objects, using short path to point them, as the
joints above.

The ways in which reduction of IPC and WT is achieved are not within the scope of this
paper.

When considering the above, one can clearly state that for any decision making by
a scheduler, information about the timing properties of an executable object must be
attached to the object, in addition to protection characteristics and others. We propose
the joint as the construct in which properties are attached and according to which decisions
regarding access are taken. This policy is uniform for both executable and nonexecutable
objects. In order to enhance ET, the context initialization procedure must be divided
into two parts: an off line binder, and an on line loader. The binder executes all the
authorization tests and "connects" the joints of accessed objects to the authorized user
object prior to execution of the object. Then, during run-time, the loader uses direct links
to manipulate the accessed objects. Not only that access times are reduced, but by using
this methodology they are also deterministic and predictable.

4.4 Executable and Non-Executable Object Joints
So far, we defined a joint to contain the following parts:

12
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" A context independent pointer for the naming network, to allow a multi-user selective
sharing of the object.

* An owner/user justification list.

* A ticket check mechanism for the protection scheme.

- / In addition, for an executable object the time constraints of the object should be within
the joint to allow scheduling it. A time constraint

< Id, Taft (conditionl), cUd, fld, Tbef (condition2) >

V can be expanded further. There might be more than one possible configurations to execute
this object. In such a case c~d is replaced by a list < cilcJk >, which reflects the computation
time of the possible configurations. Furthermore, Id may be a construct of some processes
that are related to each other in a specific way. In such a case Id is replaced by a graph, say
P, of time constraints, which is compatible with the communication graph of the system,
say C, such that the edges of P represent the specific relations.

The distinction between executable and non-executable objects is, therefore, more than
in the executability property. In a real-time system the time constraints also play an
important role in this distinction. An executable object is a time constraint on the system
resources, while the non-executable is not. Furthermore, even an off-line job has a time
constraint, but its deadline is simply infinity. Therefore, these two object classes differ not
only in their internal view, but also in their external view, or in other words in the joints

N that point to them.
Practical aspects may shed some light on this distinction. Consider a single processing

node that contains a processor, a stable memory (disk, tape, etc.), and a volatile memory.
This processing node is an instance of a portion of some processing site, allocated for an
execution of a particular job. The process to be executed may reside both on the volatile
memory and on the stable memory. This process is accessable by the on-line 8cheduler
and it has a time constraint based on the processing node allocated to execute it. It is an
executable object, pointed to by a joint that contains a proper time constraint. Now con-
sider an object that contains the source code of this process in its text representation. This
object is a data for some compiler and is not executable. Even the binary representation
of this process, the output of the compiler, is not an executable object. It serves as data
for the binder, even though some parts of it may be an exact replIca of some parts of the
process. The binder is the machine that adds to the object's joint properties that concern
its relationships to other objects, as well as its time constraints, and thereby produce an
executable object. The loader and the off-line 8cheduler might modify the constraints (e.g.
replacing a relative temporal expression by an absolute one, replacing a list of possible

13



execution configurations by the allocated ones). The visibility of an object to other objects
is restricted both by the protection mechanism and by its type. For example, an execution
of the source code of a process (a non-executable object) is rejected by its type, without
the need to check access authorization.

5 Relationships Between Objects

Objects have been extensively considered in software engineering, dealing with an estab-
lishment of a software development technique. In this context an object is captured as an
entity whose behavior is characterized by the operations it is subjected to and the opera-
tions it carries out on other objects. The external view of an object (these operations) is
its specification, and the internal view of an object is its implementation. In this paper our
point of view is slightly different. We consider the use of objects architecture in a system
context, thereby expanding the above object definitions to describe elements and entities
in a more general way. Yet, some of the properties that characterize objects in software
development context ([3]) are valid in the system architecture context as well:

" A objecth a state.

" There is a set of actions to whom an object is subjected and a set of actions it requires
from other objects.

" It is denoted by a name.

" It has a restricted visibility of (as well as by) other objects.

5.1 Relationships and Operations

In our model, objects that relate to each other, or in other words objects that satisfy a
given semantic link, are connected via the owner/user justifications in the joint. These
relationships are in accordance with the visibility restrictions and the set of operations to
whom the justificand is subjected and the justifier operates on. We can model a system as
a graph whose nodes are objects and whose arcs are directed from justifier to justificand
representing the owner/user relationship.

Executable objects can be divided ([3]) into three type classes, depending on their
relationships with other objects. Since our definition of an object is slightly different from
that of software engineering, we modify this classification:

e Actor. An object which is subjected to no operation. It only operates on other objects.

14
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Figure 4: Relations between different type. of object.

* Server. An object which is only subjected to operations by other executable objects.
It does not operate on other executable objects, but it may operate on non-executable
objects.

* Agent: An object which operates on (one or more) executable objects on behalf of
another executable object. In turn other executable objects may operate on it.

lIn addition there are the non-executable objects, which are only subjected to operations.

*Passive: An object which is only subjected to operations and does not operate on
others.

An example of such a system can be seen in Figure 4. It is important to notice that
the owner/user relationship is not an operation, although when an executable object is
involved it is in accordance with a set of permittable operations. For example consider
the relationships between passive objects. Since a passive object does not operate on
other objects, its relationships with other objects are mainly of an existential justification
nature, as in fault tolerant copies or in a distributed database. This type of relationships
necessitate the grouping of objects of the same type into a meta-object, to whom the rest
of the objects may refer to as a whole entity. We differ the grouping of a set of executable
objects into a troupe ([25]) from the grouping of a set of non-executable objects into a
pack. The dissimilarity originates in the different requirements of fault tolerance, which
are discussed in the next section.
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The set of operations which an object is allowed to be subjected to, as well as the set of
operations which can be carried out by an object, are in accordance with the object type.
For example, a passive object has an empty set of operations it is allowed to carry out on
executable objects. G. Booch ([3]) defines three classes of operation types on objects:

" Operations that change an object state.

" Operations that evaluate current state of an object.

" Operations that allow visiting parts of an object.

Recall that these operations can be carried out on object bodies as well as on object joints.

* 5.2 Fault Tolerance Relations

Requirements for fault tolerance impose maintenance of redundant objects, with topology
that adhere to the fault tolerance specifications. In an object oriented system, a support
for maintenance of objects that are copies or versions of other objects is required. It is
the operating system that should support this maintenance, according to the application
specification, but without the application's continuous control. There might be any whole
number of copies, or versions, to an object, according to the requirements of the system
to whom the original object belongs. We distinguish between copies or versions of an
executable object, denoted as olternatives, and copies of a non-executable object, denoted

4*. -. as Tepica8. Both alternatives and replicas raise an additional constraint that must be
V satisfied, the conujatency constraint. This constraint adds a new dimension to our model

of a system, through semantic links between the original object and its alternatives or
replicas.

Fault tolerance of executable objects utilizes mechanisms which allow recovery from a
fault. The most common mechanisms used in order to recover a system upon detection of
an error are roll-back mechanisms (1 36]). In real-time systems a simple roll-back strategy
might lead to a deadline miss, which is an unrecoverable fault itself. A deadline miss
m~ight occur if an error is detected when there is not sufficient time to activate an alter-
native. Hence, in real-time systems alternatives should be activated soon enough, even
before their original executable object (the preferred alternative) begins an acceptance
test. Such a roll-forward approach is usually used in a modular redundancy design and in
N-Version programming (NVP). Its major drawback is the high degree of determiniam it
requires. A set of alternatives is completely deterministic if each alternative has exactly
one possible execution for each of its reachable states. A set of alternatives of an original
executable object (a troupe [25]) may decrease the degree of determinism required (and

* increase asynchrony) by allowing more application dependency ([25]) or by forcing all the



troupe members to satisfy a set of conditions ([35]). In cases of executable objects that
apply roll-forward approach, the consistency constraint is raised mainly by contentions.
In the roll-back mechanisms, such contention may be solved by the use of an audit trail,
created by a coordinator object for the update of semi-idle cohort objects which serve as
backup ([22]). This checkpoint mechanism supports the maintenance of the availability
of accessable executable objects for a specific job, while maintaining information on re-
quired start-up points for the backup alternatives. Problems of consistency of objects that
are concurrently executing are usually solved ([32]) by means of a very expensive atomic
broadcast ([38,23,261), which is unsuitable for real-time applications. Its inappropriate-
ness is due to the stringent timing constraints to which the communication network is
subjected. An atomic broadcast requirement might therefore overload the communication
network, or at least reduce its efficiency, to an undesired level. Hence, the above solution is
impractical. Another extensively researched area in checkpointing is determining the op-
timal interval for checkpointing ([24,28,29,301). However, in checkpoint interval research,
real-time constraints have not been taken into account.

Fault tolerance of non-executable objects is mainly achieved by means of maintaining
replicas of the objects and enforcing a uniform serializability of the operations on all
replicas of each object. The property of ensuring that concurrent execution of operations
on a passive object and its replicas is equivalent to a serial execution on the passive object is
called one-copy aerializability. A method which is very common in ensuring that replicas
are consistent is a weighted voting. An example can be found in [31], for replicas of
a passive object which is subjected only to read and write operations. In this example,
consistency is maintained by setting a read quorum and a write quorum such that non-null
intersection between any read quorum and any write quorum is ensured. This method is
highly suitable for the roll-forward schemes of the executable objects, although it is serial
to a concurrent execution of the alternatives. Its determinism is very high, especially
from execution time aspects. Maintaining consistency is also achievable via atomic actions
([21,34,37]). For a distributed (message passing) system, commit protocols ([39,40,33])
provide the means to implement the atomic actions. The success of recovery procedures
depends on satisfaction of recoverability conditions (141]) by the object's internal view (its
implementation). Atomic actions are very expensive for the reasons previously stated.
Namely, application of this approach in a real-time system consumes an enormous amount
of resources.

The use of replicas and alternatives raises issues of partitioning of a pack or a troupe,
and particularly the issue of how to ensure a one-copy serializability of replicas across
partitions. A survey of both syntactic and semantic strategies that deal with the above
issues is given in [271. In cases where a transaction is not allowed to be rolled-back for
a recovery procedure (thereby preempting execution), a peasimiatic approach must be
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adopted. This approach prevents inconsistency by limiting availability, assuming the worst
on the other partitions. On the other extreme, if the availability is more important, or if
an access to a part of a pack is sufficient, an optimisic approach may be adequate. This
approach allows global inconsistency to occur and later (upon connection of the partitions)
be recovered by some resolution mechanism, as undoing, compensating or correcting. The
choice between the two approaches is application dependent, however it seems that the
more restricted a system is, the more pessimistic its approach is going to be.

6 Examples in Real-Time Design Issues

6.1 Example 1: Interrupt Driven Systems

Interrupt driven systems are frequently used in real-time applications, especially in control
systems. Each interrupt that triggers the system is responded by an interrupt service
process, as defined by the system designer. This service process is invoked by the operating
system, through its interrupt handler. The handler identifies the arriving interrupt, and
passes control to the adequate service process accordingly.

An interrupt service is defined as a time constraint too. The designer of the system
defines the maximal frequency in which each interrupt is allowed to occur. A deadline for

. the service of each interrupt is distinctly set, along with computation requirements. Con-
ditions on start time and termination time (deadline) are also defined by system designer.
Hence, each of the interrupt service processes is expressable as a time constraint, using the

o same quintuple defined in section 4.1. However, an additional mechanism is required to
ensure that a particular service process is to be executed if and only if the interrupt which
it serves has already arrived. In other words, a time constraint of an interrupt service
process depends on the occurrence of an event, and not only on the start condition.

The requirement to guarantee deadlines in a real-time system implies that the scheduling
mechanism must take interrupts into account. Most proposed scheduling mechanisms
ignore the effect of services given to interrupts. The simplest example of a faulty approach is
the one which allows an interrupt to be served the moment it occurs, preempting the object
currently being scheduled to execute. In such a preemption, one might have generated a
deadline miss, which might be an unrecoverable fault. Furthermore, there might be enough
time to execute the service process after the currently executing process completes, without
any preemption at all. The above reasons justify a selective preemption approach, and the
objects architecture we propose is fully suitable for it. As we have mentioned above (section
5), an object has a state that can be evaluated and can be changed. This property may
be used to deal with interrupt driven processes in a way which does not contradict a
guaranteed deadline.
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Figure 5: An interrupt service without preemption

6.1.1 Interrupt Driven Objects

Let an executable object, which is activated as a response to an interrupt, have two states:
idle and active. Let the state of such an object be idle as long as the interrupt it serves has
not occurred. The off-line scheduler, the binder and the loader, which participate in the
allocation of resources, must take the interrupt service requirements into account. There
is no other way which guarantees the deadline of this service upon interrupt occurrence,
while maintaining the guarantees for the deadlines of the already active objects. Therefore,
the idle and the active objects are all queued, regardless what their states are. The on-line
scheduler applies a state.evaluation procedure to the queued object which is to use the
resource next. If it is an active object, then this object receives control on the resource.
If it is an idle object, its execution is postponed. If there exists an active object, that is
scheduled for a later time and whose execution can be carried out ahead of time (without
violating the postponed object's time constraint), then this active object receives control
on the resource. Such a case is described in Figure 5. P can be carried out before serving
the interrupt. Theie is no reason to preempt P1, even if the interrupt occurs during the
execution of P1.

An idle object turns to be an active one by the state-change procedure, which is invoked
by the interrupt handler according to the interrupt source. Both the utate-evaluation

, procedure and the state-change procedure are very short (regarding their execution time)
and consume a constant overhead cost for all the devices at a specific processing node.
This results from the direct access to objects through the joint's justification, as described
in section 2.

However, applying a very safe approach as in Figure 5, without allowing a violation
of the time constraint of the postponed interrupt server, is wasteful. Hence, we want to
utilize the slack" of an idle object, as long as it is idle and its time constraint is not con-

$Time slack im defined (1121) as mmadld - etd, 0) where dtd is the time to deadline and old is the computation time.
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Figure 6: 'First-Deadline scheduling with preemption

flicted. Such an example is given in Figure 6. P executes although the interrupt service
deadline is earlier, until the service time constraint is conflicted. At the conflict detection
the service preempts P1. One of the problems with this approach is the overhead cost of
the context switching. An additional problem is the depth of preemption allowed, while
guaranteeing all constraints to be satisfied. These problems are solved in our comprehen-
sive methodology, by selectively allowing such switches and only at checkpoints. Thus,
preemption is allowed only at a finite number of points in the execution trace of an object.

6.2 Example 2: Communication Service as an Agent Object

Communication between two distinct processing nodes serves the following goals:

1. processes that execute on different nodes make a synchronization attempt, or

2. a process on one node initiates an object migration to the other, or

3. an object is in need for a remote service.

In the synchronization cue, real-time systems differ from others. A communication
synchronization attempt, which is not bounded with a timeout check, might introduce
a deadline miss. Therefore, an unbounded communication synchronization violates an
already given execution time guarantee, or even prevents by its existence any possibility
for a guarantee at all. However, there are other solutions to synchronization. Examples are
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provided through clock synchronization and calendars management for resource allocation
and scheduling. The migration case is not considered as an on-line task. The size of
an object might be modified in run-time, a fact that prevents a possible guarantee for a
migration execution time. Therefore, we do not consider these two possible communication
occurrences (synchronization and migration) in this paper.

However, a remote service is very frequent in distributed systems. A request of a remote
service is due to a lack of an adequate sever locally. It may originate in executive and
functional reasons, as well as in fault tolerance ones. The guaranteeing procedure that is
used for local computations is not adequate in such a case. One needs some agent process
to interface between the local actor4 and the remote server. This agent process must
acquire all the knowlege on execution time parameters by the server. Then, the agent
must impose a real-time constraint on the proper server, such that the actor satisfies its
own real-time constraint. The difference between a local and a remote service is described
in Figure 7.

6.2.1 Remote Service Considerations

Analysis of the tasks such an agent has to perform, results in a set of activities which should
take place in both the actor's node and the server's node, as demonstrated in Figure 8.
Agent a (at node A) cannot guarantee that the execution of the service b (at node B) will
take only to time units, which is the time required to execute b at B. Additional time is
needed due to:

1. communication delays t
4The request for a remote server may be Initisted by an agent as well. We use an actor in our example just for simplicity of
the description.
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Figure 8: Objects involved in communication
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Figure 9: Timing diagram for local and remote nodes
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2. clock inaccuracies CA and eB,

3. agent overhead t.,,.

These timing considerations are described in Figure 9. Server b at B can guarantee an
*. execution interval of to + 2e. The communication portion at B extends this interval to

to + t,,. + 2 EB. This results in an execution interval to + t,, + toga + 2 CA at node A.
If node A and node B are homogeneous, then a local execution in A requires only to.

In this model, the communication is therefore a part of the guaranteed execution time.
This property is effective not only during the execution phase, but also during the allocation
and scheduling phases. The communication is not regarded as a point-to-point message
delivery, but rather as an agent which is responsible to satisfy guaranteed deadlines at
remote nodes.

7 Concluding Remarks

Object-oriented system design seems to provide means to construct systems with a high
degree of deterministic and predictable timing properties. This determinism, together with

the required fault tolerance schemes, result in a time constraint oriented system. In this
paper we summarized our current point of view on object types, the set of operations each of
the object types is associated with and their relationships. A conceptual model of creation,
deletion and access for manipulation and state verification that we have considered in our
analysis of the applicability of objects architecture for a real-time distributed fault tolerant
operating system, lead us to define the joint that contains the following parts:

" A context independent pointer for the naming network, to allow a multi-user selective
sharing of the object.

" An owner/user justification list.

" A ticket check mechanism for the protection scheme.

" A time constraint for an executable object.

* A replica/alternative control mechanism for the fault tolerance scheme.

We discussed the distinction between on-line and off-line (infinite deadline) execution
of objects. Scheduling executable objects and context initialization are each divided in
our model into an on-line part and an off-line part. The context initializer consists of an
off-line binder and an on-line loader. Scheduling policy and acceptance of jobs (requests
to execute an object) are managed by the off-line scheduler which allocates the resources
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before loading. The on-line scheduler carries out locally the policy, and dispatches loaded
objects according to their time constraint.

In accordance with the above, we gave two examples of solutions to problems from
the real-time domain in which our objects architecture is used. We have shown that the
interrupt service can be given preemptively or non-preemptively without conflicting the
alredy given guarantees. In addition, a different approach considering the communication
system for remote object invocations has been introduced, and some of the considerations
needed for a concurrent execution have been presented.

We intend to extend this research and consider in details a model of an executable
object, and a non-trivial time constraint, to allow alloction, scheduling and verification of
a distributed real-time computation. Since we apply a top down approach in our system
requirements, we will analyze the effects of concurrency on time-services as well.
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